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Abstract-The paper presents the effective stiffness theory for isotropic two-phase elastic composites. The
theory predicts dispersion of longitudinal and transverse plane time-harmonic travelling waves. The limiting
phase velocities at vanishing wave numbers serve in the determination of the elastic moduli of the equivalent
homogeneous isotropic medium. These elastic moduli are compared with the effective moduli defined
statically.

I. INTRODUCTION
In the conventional method of describing composite media, the composite is replaced by a
homogeneous classical continuum. The main problem there consists of finding the effective
moduli. As this method of description fails to indicate dispersion of waves, it is not too satisfactory
for dynamic problems.

A conceptionally different approach was proposed in [1,2] for the case of a laminated
medium. The respective method, termed the "effective stiffness theory" was later applied to
unidirectional fibre-reinforced composites [3-5].

In this paper we shall evolve the effective stiffness theory for a certain type of isotropic
two-phase elastic composites. The geometry of the composite is described in Section 2. It is
assumed that one phase is formed by inclusions, the other phase by a matrix, and that the
composite is macroscopically homogeneous and isotropic. In the interest of simplification the
medium is conceived to be a set of identical composite elements. A composite element is formed
by a spherical inclusion and an appertaining spherical jacket of the matrix. The interaction
between the inclusion and the matrix jacket, as well as the interaction between adjacent
composite elements is taken into account by simulating continuity of the displacement vector at
the interfaces. t In Section 3, the equations of motion are obtained by the application of
Hamilton's principle. Section 4 studies the propagation of plane time-harmonic travelling waves.
Both the transverse and the longitudinal waves are dispersive. In Section 5 the limiting phase
velocities at vanishing wave numbers are employed in the determination of the elastic moduli of
the equivalent simple homogeneous isotropic medium. The elastic moduli thus established are
compared with the effective moduli defined statically.

2. KINEMATICS

Consider a composite medium macroscopically homogeneous and isotropic, whose one phase
forms more or less spherical inclusions while the other phase forms a matrix (Fig. Ia). Assign to
each inclusion a certain neighborhood of the matrix so as to obtain composite elements whose
shape comes to resemble spheres. The individual inclusions are generally of different shapes and
sizes, and their microscopical array is irregular. The assumption of macroscopical homogeneity
and isotropy offers, however, the possibility of approximately replacing the actual composite by a
fictitious medium which is formed by identical composite elements consisting of an inclusion
surrounded by the jacket of the matrix material (Fig. Ib)J If the volume per cent of inclusions is
equal to 11 3, and '\ denotes the radius of an average-sized spherical inclusion, the radius of the

t As no continuum without voids or overlapping can be composed of such identical composite elements. continuity of
displacements between the neighbouring elements is only in the averaging sense.

fit is known that if the elastic moduli of the components differ a great deal. there is a considerable scatter in properties of
the composite material caused by the different shapes and the lay-out of the inclusions. Here we shall consider sphere-shaped
inclusions. Needle-shaped. disk-shaped and spheroid-shaped inclusions will be considered elsewhere.
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Fig. I". H,'t,'rngcmo'lu, material.
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Fig. Ih. Composite element.
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As. however. no continuum without voids or overlapping can in reality be composed of such
identical composite spherical elements. the medium will in this sense be a fictitious one.

Let Xi (i = I. 2. 3) be the global Cartesian coordinates. Consider a composite element (Fig. )bl
with Xo, the coordinates of its centre. Introduce in xo, the local Cartesian coordinates .r, and the
local spherical coordinates r. cp. 1~. i.e. write the relations

x, = Xu, ".\.. i = I. 2..\

.\', = r cos 'P sin l~.

f, = r sin If sin l~.

f, = ,. cos Il

(2.1 }

In the discussion that follows the Latin indices will take on the values of I. 2. 3 and summation
will be assumed with respect to pairs of identical Latin indices.

We assume the displacement vector II;' I, in the inclusion to be linearly dependent on fi. and the
displacement vector u,(2) in the matrix jacket of the element to be linearly dependent on r. i.e.

12.2)

In the above. u:.\'(xoj, t) denotes the displacement vector at the centre of the composite clement.
1I:,~'(XOj. r~. cp.1t. t) the displacement vector on the outer surface of the element at a point with the
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local coordinates r2, lp, -tt. u~~), u~~>, l/Iki and Wi are functions defined only for discrete XOI or r2 , i.e.
at the centres or on the surfaces of the composite elements. Since rl and r2 are very small
compared with the macroscopical unit length, we shall replace these functions by continuous
functions defined for all Xi or r > O. We shall further assume that u~:) and u~~) can be replaced by a
single vector function u, (i = 1,2,3) called the gross-displacement so that it will be

U ~\)(Xi' t) = U, (Xi, t),

u~~)(xj, r2, lp, -tt, t) = U;(X. + r2 cos lp sin -tt, X2 + r2 sin cp sin -tt, X3 + r2 cos -tt, t)

= U, (Xi> t) + r2[ui.1 cos 'P sin -tt + Ui,2 sin 'P sin -tt + U',3 cos -tt1. (2.3)

The condition of continuity of displacements on the surface of the inclusion gives for
r = r,-with the use of (2.2) to (2.3)-the bond between Wi and !/Jki, viz.

The bond between neighbouring composite elements is guaranteed by the existence of Ui and by
relations (2.3). Substitution of (2.4) into (2.2) yields

(2.5)

where

The state of deformation in the medium is now described by the gross-displacement Ui and by the
tensor l/Ili.

3. THE EQUATIONS OF MOTION

The strain energy W' of the composite element is defined by

W, IfI [1 \ (1) (1) (I) (1)] d- d- d-= Zl\lEii Ekk + ILIEii Eii XI X2 X3

v(l)

(3.1)

In the above Ah ILl are the elastic Lame's constants of the inclusion, and A2, IL2 are the elastic
Lame's constants of the matrix. y(1) and yl2l are, respectively, the volume of the inclusion
(0"'; r ".; r.) and the volume of the matrix jacket (rl"'; r ".; r2). The differentiation in (3.1) is
understood to be with respect to Xi. Using (2.5) we obtain after fairly lengthy calculations the
strain energy density

in the form

(3.2)

where

"tii = Ui.i - !/Jii'
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The constant tensors A;kl. B;jkl. Cjkl have the following non-zero components:

A.'I~.' = A~~II = A" '.\ = A,.,,, ,.~ ,A~~." = A.,-,~~ -,. Tf ',\ I • (I - Tf'lA.-.

= A~,~ .. """" A ,~~, '" A ,~,,~' A~".' = Tf '!J.' ~ (I 7'/ 'l!J.~'

B "" = B~211 = B "~II = 271 '[ (A.' .;- 2!J.~) . (A I 4· 2!J. I IJ.

L"" = L~~21 = Lm, = T/'(A, + 2!J.,} +13 V - T/")A~ + (8V - 2T/')!J..'.

L"21 = L~1" == L"" = (''-'" = ('12'-' = L,,~, = 71 'A, + (V - 71 ')A~ + V!J.~.

LI"~ = L"" == C, '" =- ("," = C.~,.', == C,.',.' = 1/ '!J.I + VA, + (f, \/ - 1/ ')/1"

C'~~I = L"" == C"" co C"" = (\", == C,.'~, = 1/ '/11-+ V'A," (V ..- 71 ')/1"

where

The kinetic energy of the composite element is defined by

, I' [IJJ .",2 - - - JJJ ,'21~ - - -'/K = 2A Pili, dXI dx~ dx, -+- P~/Ii dXI Ux.' UX, ...
\,.1. \",::,.

I .~. ~)

Pi and P2 are. respectively. the density of the inclusion and the density of the matrix. The dol
above a quantity denotes the derivative with respect to time f. Using (2.5> we ohtain the kinctil'
energy of unit volume of the composite

K --"4~K'
11Tr,

in the form

where

\1.111

Let V denote a fixed regular region. and f,. f~ fixed times. For independent \'ariation~ lit 'I,. ,I."
for which

15/1, = l5l/Jii= 0

on the surface S of region V. Hamilton's principle is of the form

t'5 f" f. (K· W> d V dr = O.
Jt~ \ I "'."7 i
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The sought equations of motion are Euler's conditions of the variational principle (3.7). After
calculations using (3.2), (3.5) we obtain a total of twelve equations of motion, viz.

alUl,1I + a2(UI.22+ UI,33) + a3(U2.21 + U3,31)+ a 41/1II,1 + a,(1/122.1 + l/J~~.I)

+ a6(I/I12,2 + 1/113,3) + a7(1/121.2 + 1/131,3) + asii\ + a9(iil.ll + iil,22 + ii l.33)

+ alO(~II,1 + ~21.2 + ~31,3) = 0, (3,8)

a4U 1.1 + a,(U2.2 + U~.3) + alll/lll + adl/l22 + 1/133) + al3~11 + a IOUI.I = 0, (3.9)

a6ul.2+ a7U2.1 + a 141/112 + a151/121 + a13~12+ a1OU2.1 = O. 0.10)

a6U2.1 + a7U 1,2 + a 141/121 + alsl/J12 + a 13~21 + a IOUI,2 = O. (3.11)

The remaining eight equations are obtained from (3.8) to (3.11) by cyclic permutation of the
indices 1,2,3. We have introduced the following notation in (3.8) to (3.11):

al = (3 V + 1)'\'2 + (8V +2)1£2,

a3 = (2 V + 1)('\'2 + 1£2),

a6 = - V('\'2 +1£2),

a7 = - V('\'2 +61£2),

X
a9=2 P2,

a2 = V'\'2 + (6 V + 1)1£2,

a4 = - V(3'\'2 +81£2),

as = -p,
Z

alO = "2P2,

all = 11 3
(,\,1 +21£1) + (3 V -11 3

)'\'2 + (8 V - 211
3
)1£2,

al2 = 11
3

'\'1 +(V -11
3
)'\'2+ V1L2' al3 = J,

al4 = 11
3
1£1 + V,\, 2+(6 V -11

3
)1£2,

alS = 11
3

1£1 + V'\'2 + (V -11
3
)1£2.

(3.12)

If we take the limit 11--+0, r2--+0 in the equations of motion, we arrive at classical Lame's
equations of motion of a simple elastic medium with Lame's constants '\'2, 1£2.

4. PROPAGATION OF PLANE HARMONIC WAVES

The equations of motion obtained above will be used to study the propagation of plane
time-harmonic travelling waves. We assume the solution to the equations to be of the form

Here Ui, 'I{111 are the constant amplitudes, k is the wave number, c the phase velocity. After
substitution the set of twelve equations of motion will decompose into four systems: the first
system will contain U2, 'I{112, 'I{121, the second U3, '1{113, '1{13" the third U" 'I{111, '1{122, '1{133 and the
fourth only '1{123, '1{1]2. The first two systems of equations describe the transverse waves, the third
represents the longitudinal wave and the fourth system describes the twisting micro-wave. The
condition of non-zero amplitudes is that the determinants of these systems of equations should be
zero. At the same time, those are the conditions affording a relation between c and k, Le. they are
the sought dispersion relations. For transverse waves the dispersion relation turns out to be

a6,

a14- c2
k

2
a13'

a7- c 2k2alO

alS = O.
aI4-c 2k2

a13
(4.1a)

The dispersion relation for the longitudinal wave is

al + c2
as- c2k2

a9'
a4- c2

k
2
alO'

a6,

a4- c 2k2alO,
all- c2k2al3,

a12,

2a6
2al2 = O.

(all + a12) - C
2ea13

(4.1b)
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The dispersion of the twisting wave is given by

We shall evaluate the limit phase velocity 0 c for k -+ O. From (4.1a) we obtain

(4.lh) gives

(4.lcl

(4.2)

(4.3)

From (4.lc) it follows c -+0:: for k -+0.
The lowest modes of the dispersion curves for the transverse wave are shown in Fig. 2, and

for the longitudinal wave in Fig. 3. In place of c. k there are plotted the dimensionless quantities
13. f

_ (l!2.)IJ2
(3 - c .

JL];

We aJso write that

'Y =. IJ.-I.
1L2

a =. I, 2.

7= o,~

rf=J

V, = 0,3

~=o,35

I0'--+----2+-1 ---+--+---~

Fig. 2. Dispersion of transverse waves.

o 1

~,=qJ

vz=l1,35

• I
:) If .~

Fig. J. Dispersion of longitudinal waves.
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The curves in Figs. 2 and 3 are drawn for the values:

1143

1/ = 0·8: t't =3:

'Y = 10: 'Y = 50: 'Y = 100.

For this case the volume per cent of inclusions is 1/' = 0·512. It is seen that the transverse waves
display a stronger dispersion than the longitudinal waves.

5. EFFECTIVE MODULI

In the preceding section we have deduced the dispersion relations for plane waves in the
effective stiffness model. The approximate dispersion curves obtained in the manner described
cannot, however, be compared with exact curves, for no exact elasticity solutions exist.

We can, however, compare the moduli A, ii of the equivalent isotropic homogeneous simple
medium in which the transverse wave propagates with a constant phase velocity °c defined by
expression (4.2) and the longitudinal wave with a constant phase velocity °c defined by
expression (4.3), with the effective moduli defined statically. If the density of the homogeneous
isotropic medium is equal to p from (3.6), we have from (4.2), (4.3) that

(5.1)

Note that Aand ii defined in (5.1) depend on A" MI, A2, M2 and 1/. They depend on'l only through
the intermediary of 1/, Le. A and ii do not change with changing " provided the ratio "/'2
continues constant. Hence (5.1), (4.2), (4.3) continue to apply even in the case of different
inclusion sizes. If '2 can be arbitrarily small at constant '1/'2' it is already possible to construct
from variously large composite spherical elements a continuum without voids or overlapping
which is macroscopically homogeneous and isotropic. For such a model, Z. Hashin [6] established
the exact effective volume modulus Ke (cf. eqn (38) in [6]) and the exact bounds for the effective
shear modulus. As the calculation of these bounds is fairly complicated, Z. Hashin presents-for
the case that the phase moduli do not differ too much from one another-an approximate value of
the effective shear modulus iio (eqn (54) in [6]) which always lies between the exact bounds. In [7]
Z. Hashin and S. Shtrikman derived the upper and the lower bounds for the effective shear
modulus, MI and M. of a two-phase composite with an arbitrary geometry, provided that the
composite is macroscopically homogeneous and isotropic.

We shall carry out a comparison for the tungsten-carbide-cobalt alloy considered in [6]. The
alloy consists of tungsten-carbide particles embedded in a matrix of cobalt. The moduli of the
particles are M' = 41·8 x 106 psi, KI = 60·7 X 106 psi, and the moduli of the matrix are
M2 = 11·5 X 106 psi, K2 = 25·0 X 106 psi. The volume modulus of the composite K,

calculated from (5.1), differs for 1/3 E (0, I) from the exact value K, obtained from (38), [61 by I
per cent maximum. ii calculated from (5.1) for 1/3 E (0, I) lies within Hashin-Shtrikman bounds
MI, Mu = Ma.

For the alloy considered, 'Y = 3·65. Consider a composite material with 'Y = 100, VI = 1/ 2 = 0·3.
Again, the deviation of K from Ke is less than I per cent. Now Hashin-Shtrikman bounds for the
shear modulus are very broad and ii lies within these bounds being very near the lower bound
iii = ii.·

We may therefore claim that the moduli K, ii defined in (5.1) afford approximate values of the
effective moduli defined statically. By substituting (3.12) into (5.1) we obtain for ii the simple
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expressIOn

where

A-
I' .. =--.-.---..

. ~(A.+f1-I·

The expression of K would turn out to be more complicated and we ~hallnot rre~ent it Iwrt' \':1

matter of fact. the exact value of K" i~ available in (38). [hI.

il, l' (l N l' I. U sin 1\

The paper evolves the effective stiffness theory for an isotropic two-phase clastic complhirc
material. One phase of this material is formed by spherical elastic inclusions. the other rh:l~e h~

an elastic matrix. The theory predicts the dispersion of plane time-harmonic travelling wave~.

The phase velocities for long wave lengths define the elastic moduli which are found to he \t'n
close to the effective moduli defined staticall~.

The effective stiffness method invol\'e~ :I homogeneous higher-order l'lllltinuuJI1 II ith
microstructure. It bears a close resemblance to some elasticity theories with microstrucil!re. III
the model presented here. \ve have two tensors of deformation: fi; and y,. In Reh. 11-' ~! thcl..·

are four deformation tensors: E;,. Y'i.

In Mindlin's microstructure elasticity theory [91 three tensors of deformation were introduced: Ei,.

'Iij and Kijk. A detailed comparison would reveal that the model presented in this paper is a special
kind of Mindlin's theory. The effective stiffness model yields. however. the elastic material
tensors as functions of the elastic moduli of constituents and of the geometrical lav·out of
inclusions. while in Mindlin's theory these tensors remain undetermined.

In Refs. 1I-51 and here Hamilton's principle was used. Starting from other dynamical
variational principles formulated through convolutions we could proceed in the same 1\':1\ I'lli
thermoelastic [81 and viscoelastic composite materials.
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